Bitcoin Mining TutorialBinance Support

Ultimate glossary of crypto currency terms, acronyms and abbreviations

I thought it would be really cool to have an ultimate guide for those new to crypto currencies and the terms used. I made this mostly for beginner’s and veterans alike. I’m not sure how much use you will get out of this. Stuff gets lost on Reddit quite easily so I hope this finds its way to you. Included in this list, I have included most of the terms used in crypto-communities. I have compiled this list from a multitude of sources. The list is in alphabetical order and may include some words/terms not exclusive to the crypto world but may be helpful regardless.
2FA
Two factor authentication. I highly advise that you use it.
51% Attack:
A situation where a single malicious individual or group gains control of more than half of a cryptocurrency network’s computing power. Theoretically, it could allow perpetrators to manipulate the system and spend the same coin multiple times, stop other users from completing blocks and make conflicting transactions to a chain that could harm the network.
Address (or Addy):
A unique string of numbers and letters (both upper and lower case) used to send, receive or store cryptocurrency on the network. It is also the public key in a pair of keys needed to sign a digital transaction. Addresses can be shared publicly as a text or in the form of a scannable QR code. They differ between cryptocurrencies. You can’t send Bitcoin to an Ethereum address, for example.
Altcoin (alternative coin): Any digital currency other than Bitcoin. These other currencies are alternatives to Bitcoin regarding features and functionalities (e.g. faster confirmation time, lower price, improved mining algorithm, higher total coin supply). There are hundreds of altcoins, including Ether, Ripple, Litecoin and many many others.
AIRDROP:
An event where the investors/participants are able to receive free tokens or coins into their digital wallet.
AML: Defines Anti-Money Laundering laws**.**
ARBITRAGE:
Getting risk-free profits by trading (simultaneous buying and selling of the cryptocurrency) on two different exchanges which have different prices for the same asset.
Ashdraked:
Being Ashdraked is essentially a more detailed version of being Zhoutonged. It is when you lose all of your invested capital, but you do so specifically by shorting Bitcoin. The expression “Ashdraked” comes from a story of a Romanian cryptocurrency investor who insisted upon shorting BTC, as he had done so successfully in the past. When the price of BTC rose from USD 300 to USD 500, the Romanian investor lost all of his money.
ATH (All Time High):
The highest price ever achieved by a cryptocurrency in its entire history. Alternatively, ATL is all time low
Bearish:
A tendency of prices to fall; a pessimistic expectation that the value of a coin is going to drop.
Bear trap:
A manipulation of a stock or commodity by investors.
Bitcoin:
The very first, and the highest ever valued, mass-market open source and decentralized cryptocurrency and digital payment system that runs on a worldwide peer to peer network. It operates independently of any centralized authorities
Bitconnect:
One of the biggest scams in the crypto world. it was made popular in the meme world by screaming idiot Carlos Matos, who infamously proclaimed," hey hey heeeey” and “what's a what's a what's up wasssssssssuuuuuuuuuuuuup, BitConneeeeeeeeeeeeeeeeeeeeeeeect!”. He is now in the mentally ill meme hall of fame.
Block:
A package of permanently recorded data about transactions occurring every time period (typically about 10 minutes) on the blockchain network. Once a record has been completed and verified, it goes into a blockchain and gives way to the next block. Each block also contains a complex mathematical puzzle with a unique answer, without which new blocks can’t be added to the chain.
Blockchain:
An unchangeable digital record of all transactions ever made in a particular cryptocurrency and shared across thousands of computers worldwide. It has no central authority governing it. Records, or blocks, are chained to each other using a cryptographic signature. They are stored publicly and chronologically, from the genesis block to the latest block, hence the term blockchain. Anyone can have access to the database and yet it remains incredibly difficult to hack.
Bullish:
A tendency of prices to rise; an optimistic expectation that a specific cryptocurrency will do well and its value is going to increase.
BTFD:
Buy the fucking dip. This advise was bestowed upon us by the gods themselves. It is the iron code to crypto enthusiasts.
Bull market:
A market that Cryptos are going up.
Consensus:
An agreement among blockchain participants on the validity of data. Consensus is reached when the majority of nodes on the network verify that the transaction is 100% valid.
Crypto bubble:
The instability of cryptocurrencies in terms of price value
Cryptocurrency:
A type of digital currency, secured by strong computer code (cryptography), that operates independently of any middlemen or central authoritie
Cryptography:
The art of converting sensitive data into a format unreadable for unauthorized users, which when decoded would result in a meaningful statement.
Cryptojacking:
The use of someone else’s device and profiting from its computational power to mine cryptocurrency without their knowledge and consent.
Crypto-Valhalla:
When HODLers(holders) eventually cash out they go to a place called crypto-Valhalla. The strong will be separated from the weak and the strong will then be given lambos.
DAO:
Decentralized Autonomous Organizations. It defines A blockchain technology inspired organization or corporation that exists and operates without human intervention.
Dapp (decentralized application):
An open-source application that runs and stores its data on a blockchain network (instead of a central server) to prevent a single failure point. This software is not controlled by the single body – information comes from people providing other people with data or computing power.
Decentralized:
A system with no fundamental control authority that governs the network. Instead, it is jointly managed by all users to the system.
Desktop wallet:
A wallet that stores the private keys on your computer, which allow the spending and management of your bitcoins.
DILDO:
Long red or green candles. This is a crypto signal that tells you that it is not favorable to trade at the moment. Found on candlestick charts.
Digital Signature:
An encrypted digital code attached to an electronic document to prove that the sender is who they say they are and confirm that a transaction is valid and should be accepted by the network.
Double Spending:
An attack on the blockchain where a malicious user manipulates the network by sending digital money to two different recipients at exactly the same time.
DYOR:
Means do your own research.
Encryption:
Converting data into code to protect it from unauthorized access, so that only the intended recipient(s) can decode it.
Eskrow:
the practice of having a third party act as an intermediary in a transaction. This third party holds the funds on and sends them off when the transaction is completed.
Ethereum:
Ethereum is an open source, public, blockchain-based platform that runs smart contracts and allows you to build dapps on it. Ethereum is fueled by the cryptocurrency Ether.
Exchange:
A platform (centralized or decentralized) for exchanging (trading) different forms of cryptocurrencies. These exchanges allow you to exchange cryptos for local currency. Some popular exchanges are Coinbase, Bittrex, Kraken and more.
Faucet:
A website which gives away free cryptocurrencies.
Fiat money:
Fiat currency is legal tender whose value is backed by the government that issued it, such as the US dollar or UK pound.
Fork:
A split in the blockchain, resulting in two separate branches, an original and a new alternate version of the cryptocurrency. As a single blockchain forks into two, they will both run simultaneously on different parts of the network. For example, Bitcoin Cash is a Bitcoin fork.
FOMO:
Fear of missing out.
Frictionless:
A system is frictionless when there are zero transaction costs or trading retraints.
FUD:
Fear, Uncertainty and Doubt regarding the crypto market.
Gas:
A fee paid to run transactions, dapps and smart contracts on Ethereum.
Halving:
A 50% decrease in block reward after the mining of a pre-specified number of blocks. Every 4 years, the “reward” for successfully mining a block of bitcoin is reduced by half. This is referred to as “Halving”.
Hardware wallet:
Physical wallet devices that can securely store cryptocurrency maximally. Some examples are Ledger Nano S**,** Digital Bitbox and more**.**
Hash:
The process that takes input data of varying sizes, performs an operation on it and converts it into a fixed size output. It cannot be reversed.
Hashing:
The process by which you mine bitcoin or similar cryptocurrency, by trying to solve the mathematical problem within it, using cryptographic hash functions.
HODL:
A Bitcoin enthusiast once accidentally misspelled the word HOLD and it is now part of the bitcoin legend. It can also mean hold on for dear life.
ICO (Initial Coin Offering):
A blockchain-based fundraising mechanism, or a public crowd sale of a new digital coin, used to raise capital from supporters for an early stage crypto venture. Beware of these as there have been quite a few scams in the past.
John mcAfee:
A man who will one day eat his balls on live television for falsely predicting bitcoin going to 100k. He has also become a small meme within the crypto community for his outlandish claims.
JOMO:
Joy of missing out. For those who are so depressed about missing out their sadness becomes joy.
KYC:
Know your customer(alternatively consumer).
Lambo:
This stands for Lamborghini. A small meme within the investing community where the moment someone gets rich they spend their earnings on a lambo. One day we will all have lambos in crypto-valhalla.
Ledger:
Away from Blockchain, it is a book of financial transactions and balances. In the world of crypto, the blockchain functions as a ledger. A digital currency’s ledger records all transactions which took place on a certain block chain network.
Leverage:
Trading with borrowed capital (margin) in order to increase the potential return of an investment.
Liquidity:
The availability of an asset to be bought and sold easily, without affecting its market price.
of the coins.
Margin trading:
The trading of assets or securities bought with borrowed money.
Market cap/MCAP:
A short-term for Market Capitalization. Market Capitalization refers to the market value of a particular cryptocurrency. It is computed by multiplying the Price of an individual unit of coins by the total circulating supply.
Miner:
A computer participating in any cryptocurrency network performing proof of work. This is usually done to receive block rewards.
Mining:
The act of solving a complex math equation to validate a blockchain transaction using computer processing power and specialized hardware.
Mining contract:
A method of investing in bitcoin mining hardware, allowing anyone to rent out a pre-specified amount of hashing power, for an agreed amount of time. The mining service takes care of hardware maintenance, hosting and electricity costs, making it simpler for investors.
Mining rig:
A computer specially designed for mining cryptocurrencies.
Mooning:
A situation the price of a coin rapidly increases in value. Can also be used as: “I hope bitcoin goes to the moon”
Node:
Any computing device that connects to the blockchain network.
Open source:
The practice of sharing the source code for a piece of computer software, allowing it to be distributed and altered by anyone.
OTC:
Over the counter. Trading is done directly between parties.
P2P (Peer to Peer):
A type of network connection where participants interact directly with each other rather than through a centralized third party. The system allows the exchange of resources from A to B, without having to go through a separate server.
Paper wallet:
A form of “cold storage” where the private keys are printed onto a piece of paper and stored offline. Considered as one of the safest crypto wallets, the truth is that it majors in sweeping coins from your wallets.
Pre mining:
The mining of a cryptocurrency by its developers before it is released to the public.
Proof of stake (POS):
A consensus distribution algorithm which essentially rewards you based upon the amount of the coin that you own. In other words, more investment in the coin will leads to more gain when you mine with this protocol In Proof of Stake, the resource held by the “miner” is their stake in the currency.
PROOF OF WORK (POW) :
The competition of computers competing to solve a tough crypto math problem. The first computer that does this is allowed to create new blocks and record information.” The miner is then usually rewarded via transaction fees.
Protocol:
A standardized set of rules for formatting and processing data.
Public key / private key:
A cryptographic code that allows a user to receive cryptocurrencies into an account. The public key is made available to everyone via a publicly accessible directory, and the private key remains confidential to its respective owner. Because the key pair is mathematically related, whatever is encrypted with a public key may only be decrypted by its corresponding private key.
Pump and dump:
Massive buying and selling activity of cryptocurrencies (sometimes organized and to one’s benefit) which essentially result in a phenomenon where the significant surge in the value of coin followed by a huge crash take place in a short time frame.
Recovery phrase:
A set of phrases you are given whereby you can regain or access your wallet should you lose the private key to your wallets — paper, mobile, desktop, and hardware wallet. These phrases are some random 12–24 words. A recovery Phrase can also be called as Recovery seed, Seed Key, Recovery Key, or Seed Phrase.
REKT:
Referring to the word “wrecked”. It defines a situation whereby an investor or trader who has been ruined utterly following the massive losses suffered in crypto industry.
Ripple:
An alternative payment network to Bitcoin based on similar cryptography. The ripple network uses XRP as currency and is capable of sending any asset type.
ROI:
Return on investment.
Safu:
A crypto term for safe popularized by the Bizonnaci YouTube channel after the CEO of Binance tweeted
“Funds are safe."
“the exchage I use got hacked!”“Oh no, are your funds safu?”
“My coins better be safu!”


Sats/Satoshi:
The smallest fraction of a bitcoin is called a “satoshi” or “sat”. It represents one hundred-millionth of a bitcoin and is named after Satoshi Nakamoto.
Satoshi Nakamoto:
This was the pseudonym for the mysterious creator of Bitcoin.
Scalability:
The ability of a cryptocurrency to contain the massive use of its Blockchain.
Sharding:
A scaling solution for the Blockchain. It is generally a method that allows nodes to have partial copies of the complete blockchain in order to increase overall network performance and consensus speeds.
Shitcoin:
Coin with little potential or future prospects.
Shill:
Spreading buzz by heavily promoting a particular coin in the community to create awareness.
Short position:
Selling of a specific cryptocurrency with an expectation that it will drop in value.
Silk road:
The online marketplace where drugs and other illicit items were traded for Bitcoin. This marketplace is using accessed through “TOR”, and VPNs. In October 2013, a Silk Road was shut down in by the FBI.
Smart Contract:
Certain computational benchmarks or barriers that have to be met in turn for money or data to be deposited or even be used to verify things such as land rights.
Software Wallet:
A crypto wallet that exists purely as software files on a computer. Usually, software wallets can be generated for free from a variety of sources.
Solidity:
A contract-oriented coding language for implementing smart contracts on Ethereum. Its syntax is similar to that of JavaScript.
Stable coin:
A cryptocoin with an extremely low volatility that can be used to trade against the overall market.
Staking:
Staking is the process of actively participating in transaction validation (similar to mining) on a proof-of-stake (PoS) blockchain. On these blockchains, anyone with a minimum-required balance of a specific cryptocurrency can validate transactions and earn Staking rewards.
Surge:
When a crypto currency appreciates or goes up in price.
Tank:
The opposite of mooning. When a coin tanks it can also be described as crashing.
Tendies
For traders , the chief prize is “tendies” (chicken tenders, the treat an overgrown man-child receives for being a “Good Boy”) .
Token:
A unit of value that represents a digital asset built on a blockchain system. A token is usually considered as a “coin” of a cryptocurrency, but it really has a wider functionality.
TOR: “The Onion Router” is a free web browser designed to protect users’ anonymity and resist censorship. Tor is usually used surfing the web anonymously and access sites on the “Darkweb”.
Transaction fee:
An amount of money users are charged from their transaction when sending cryptocurrencies.
Volatility:
A measure of fluctuations in the price of a financial instrument over time. High volatility in bitcoin is seen as risky since its shifting value discourages people from spending or accepting it.
Wallet:
A file that stores all your private keys and communicates with the blockchain to perform transactions. It allows you to send and receive bitcoins securely as well as view your balance and transaction history.
Whale:
An investor that holds a tremendous amount of cryptocurrency. Their extraordinary large holdings allow them to control prices and manipulate the market.
Whitepaper:

A comprehensive report or guide made to understand an issue or help decision making. It is also seen as a technical write up that most cryptocurrencies provide to take a deep look into the structure and plan of the cryptocurrency/Blockchain project. Satoshi Nakamoto was the first to release a whitepaper on Bitcoin, titled “Bitcoin: A Peer-to-Peer Electronic Cash System” in late 2008.
And with that I finally complete my odyssey. I sincerely hope that this helped you and if you are new, I welcome you to crypto. If you read all of that I hope it increased, you in knowledge.
my final definition:
Crypto-Family:
A collection of all the HODLers and crypto fanatics. A place where all people alike unite over a love for crypto.
We are all in this together as we pioneer the new world that is crypto currency. I wish you a great day and Happy HODLing.
-u/flacciduck
feel free to comment words or terms that you feel should be included or about any errors I made.
Edit1:some fixes were made and added words.
submitted by flacciduck to CryptoCurrency [link] [comments]

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

How To End The Cryptocurrency Exchange "Wild West" Without Crippling Innovation


In case you haven't noticed the consultation paper, staff notice, and report on Quadriga, regulators are now clamping down on Canadian cryptocurrency exchanges. The OSC and other regulatory bodies are still interested in industry feedback. They have not put forward any official regulation yet. Below are some ideas/insights and a proposed framework.



Many of you have limited time to read the full proposal, so here are the highlights:

Offline Multi-Signature

Effective standards to prevent both internal and external theft. Exchange operators are trained and certified, and have a legal responsibility to users.

Regular Transparent Audits

Provides visibility to Canadians that their funds are fully backed on the exchange, while protecting privacy and sensitive platform information.

Insurance Requirements

Establishment of basic insurance standards/strategy, to expand over time. Removing risk to exchange users of any hot wallet theft.


Background and Justifications


Cold Storage Custody/Management
After reviewing close to 100 cases, all thefts tend to break down into more or less the same set of problems:
• Funds stored online or in a smart contract,
• Access controlled by one person or one system,
• 51% attacks (rare),
• Funds sent to the wrong address (also rare), or
• Some combination of the above.
For the first two cases, practical solutions exist and are widely implemented on exchanges already. Offline multi-signature solutions are already industry standard. No cases studied found an external theft or exit scam involving an offline multi-signature wallet implementation. Security can be further improved through minimum numbers of signatories, background checks, providing autonomy and legal protections to each signatory, establishing best practices, and a training/certification program.
The last two transaction risks occur more rarely, and have never resulted in a loss affecting the actual users of the exchange. In all cases to date where operators made the mistake, they've been fully covered by the exchange platforms.
• 51% attacks generally only occur on blockchains with less security. The most prominent cases have been Bitcoin Gold and Ethereum Classic. The simple solution is to enforce deposit limits and block delays such that a 51% attack is not cost-effective.
• The risk of transactions to incorrect addresses can be eliminated by a simple test transaction policy on large transactions. By sending a small amount of funds prior to any large withdrawals/transfers as a standard practice, the accuracy of the wallet address can be validated.
The proposal covers all loss cases and goes beyond, while avoiding significant additional costs, risks, and limitations which may be associated with other frameworks like SOC II.

On The Subject of Third Party Custodians
Many Canadian platforms are currently experimenting with third party custody. From the standpoint of the exchange operator, they can liberate themselves from some responsibility of custody, passing that off to someone else. For regulators, it puts crypto in similar categorization to oil, gold, and other commodities, with some common standards. Platform users would likely feel greater confidence if the custodian was a brand they recognized. If the custodian was knowledgeable and had a decent team that employed multi-sig, they could keep assets safe from internal theft. With the right protections in place, this could be a great solution for many exchanges, particularly those that lack the relevant experience or human resources for their own custody systems.
However, this system is vulnerable to anyone able to impersonate the exchange operators. You may have a situation where different employees who don't know each other that well are interacting between different companies (both the custodian and all their customers which presumably isn't just one exchange). A case study of what can go wrong in this type of environment might be Bitpay, where the CEO was tricked out of 5000 bitcoins over 3 separate payments by a series of emails sent legitimately from a breached computer of another company CEO. It's also still vulnerable to the platform being compromised, as in the really large $70M Bitfinex hack, where the third party Bitgo held one key in a multi-sig wallet. The hacker simply authorized the withdrawal using the same credentials as Bitfinex (requesting Bitgo to sign multiple withdrawal transactions). This succeeded even with the use of multi-sig and two heavily security-focused companies, due to the lack of human oversight (basically, hot wallet). Of course, you can learn from these cases and improve the security, but so can hackers improve their deception and at the end of the day, both of these would have been stopped by the much simpler solution of a qualified team who knew each other and employed multi-sig with properly protected keys. It's pretty hard to beat a human being who knows the business and the typical customer behaviour (or even knows their customers personally) at spotting fraud, and the proposed multi-sig means any hacker has to get through the scrutiny of 3 (or more) separate people, all of whom would have proper training including historical case studies.
There are strong arguments both for and against using use of third party custodians. The proposal sets mandatory minimum custody standards would apply regardless if the cold wallet signatories are exchange operators, independent custodians, or a mix of both.

On The Subject Of Insurance
ShakePay has taken the first steps into this new realm (congratulations). There is no question that crypto users could be better protected by the right insurance policies, and it certainly feels better to transact with insured platforms. The steps required to obtain insurance generally place attention in valuable security areas, and in this case included a review from CipherTrace. One of the key solutions in traditional finance comes from insurance from entities such as the CDIC.
However, historically, there wasn't found any actual insurance payout to any cryptocurrency exchange, and there are notable cases where insurance has not paid. With Bitpay, for example, the insurance agent refused because the issue happened to the third party CEO's computer instead of anything to do with Bitpay itself. With the Youbit exchange in South Korea, their insurance claim was denied, and the exchange ultimately ended up instead going bankrupt with all user's funds lost. To quote Matt Johnson in the original Lloyd's article: “You can create an insurance policy that protects no one – you know there are so many caveats to the policy that it’s not super protective.”
ShakePay's insurance was only reported to cover their cold storage, and “physical theft of the media where the private keys are held”. Physical theft has never, in the history of cryptocurrency exchange cases reviewed, been reported as the cause of loss. From the limited information of the article, ShakePay made it clear their funds are in the hands of a single US custodian, and at least part of their security strategy is to "decline[] to confirm the custodian’s name on the record". While this prevents scrutiny of the custodian, it's pretty silly to speculate that a reasonably competent hacking group couldn't determine who the custodian is. A far more common infiltration strategy historically would be social engineering, which has succeeded repeatedly. A hacker could trick their way into ShakePay's systems and request a fraudulent withdrawal, impersonate ShakePay and request the custodian to move funds, or socially engineer their way into the custodian to initiate the withdrawal of multiple accounts (a payout much larger than ShakePay) exploiting the standard procedures (for example, fraudulently initiating or override the wallet addresses of a real transfer). In each case, nothing was physically stolen and the loss is therefore not covered by insurance.
In order for any insurance to be effective, clear policies have to be established about what needs to be covered. Anything short of that gives Canadians false confidence that they are protected when they aren't in any meaningful way. At this time, the third party insurance market does not appear to provide adequate options or coverage, and effort is necessary to standardize custody standards, which is a likely first step in ultimately setting up an insurance framework.
A better solution compared to third party insurance providers might be for Canadian exchange operators to create their own collective insurance fund, or a specific federal organization similar to the CDIC. Such an organization would have a greater interest or obligation in paying out actual cases, and that would be it's purpose rather than maximizing it's own profit. This would be similar to the SAFU which Binance has launched, except it would cover multiple exchanges. There is little question whether the SAFU would pay out given a breach of Binance, and a similar argument could be made for a insurance fund managed by a collective of exchange operators or a government organization. While a third party insurance provider has the strong market incentive to provide the absolute minimum coverage and no market incentive to payout, an entity managed by exchange operators would have incentive to protect the reputation of exchange operators/the industry, and the government should have the interest of protecting Canadians.

On The Subject of Fractional Reserve
There is a long history of fractional reserve failures, from the first banks in ancient times, through the great depression (where hundreds of fractional reserve banks failed), right through to the 2008 banking collapse referenced in the first bitcoin block. The fractional reserve system allows banks to multiply the money supply far beyond the actual cash (or other assets) in existence, backed only by a system of debt obligations of others. Safely supporting a fractional reserve system is a topic of far greater complexity than can be addressed by a simple policy, and when it comes to cryptocurrency, there is presently no entity reasonably able to bail anyone out in the event of failure. Therefore, this framework is addressed around entities that aim to maintain 100% backing of funds.
There may be some firms that desire but have failed to maintain 100% backing. In this case, there are multiple solutions, including outside investment, merging with other exchanges, or enforcing a gradual restoration plan. All of these solutions are typically far better than shutting down the exchange, and there are multiple cases where they've been used successfully in the past.

Proof of Reserves/Transparency/Accountability
Canadians need to have visibility into the backing on an ongoing basis.
The best solution for crypto-assets is a Proof of Reserve. Such ideas go back all the way to 2013, before even Mt. Gox. However, no Canadian exchange has yet implemented such a system, and only a few international exchanges (CoinFloor in the UK being an example) have. Many firms like Kraken, BitBuy, and now ShakePay use the Proof of Reserve term to refer to lesser proofs which do not actually cryptographically prove the full backing of all user assets on the blockchain. In order for a Proof of Reserve to be effective, it must actually be a complete proof, and it needs to be understood by the public that is expected to use it. Many firms have expressed reservations about the level of transparency required in a complete Proof of Reserve (for example Kraken here). While a complete Proof of Reserves should be encouraged, and there are some solutions in the works (ie TxQuick), this is unlikely to be suitable universally for all exchange operators and users.
Given the limitations, and that firms also manage fiat assets, a more traditional audit process makes more sense. Some Canadian exchanges (CoinSquare, CoinBerry) have already subjected themselves to annual audits. However, these results are not presently shared publicly, and there is no guarantee over the process including all user assets or the integrity and independence of the auditor. The auditor has been typically not known, and in some cases, the identity of the auditor is protected by a NDA. Only in one case (BitBuy) was an actual report generated and publicly shared. There has been no attempt made to validate that user accounts provided during these audits have been complete or accurate. A fraudulent fractional exchange, or one which had suffered a breach they were unwilling to publicly accept (see CoinBene), could easily maintain a second set of books for auditors or simply exclude key accounts to pass an individual audit.
The proposed solution would see a reporting standard which includes at a minimum - percentage of backing for each asset relative to account balances and the nature of how those assets are stored, with ownership proven by the auditor. The auditor would also publicly provide a "hash list", which they independently generate from the accounts provided by the exchange. Every exchange user can then check their information against this public "hash list". A hash is a one-way form of encryption, which fully protects the private information, yet allows anyone who knows that information already to validate that it was included. Less experienced users can take advantage of public tools to calculate the hash from their information (provided by the exchange), and thus have certainty that the auditor received their full balance information. Easy instructions can be provided.
Auditors should be impartial, their identities and process public, and they should be rotated so that the same auditor is never used twice in a row. Balancing the cost of auditing against the needs for regular updates, a 6 month cycle likely makes the most sense.

Hot Wallet Management
The best solution for hot wallets is not to use them. CoinBerry reportedly uses multi-sig on all withdrawals, and Bitmex is an international example known for their structure devoid of hot wallets.
However, many platforms and customers desire fast withdrawal processes, and human validation has a cost of time and delay in this process.
A model of self-insurance or separate funds for hot wallets may be used in these cases. Under this model, a platform still has 100% of their client balance in cold storage and holds additional funds in hot wallets for quick withdrawal. Thus, the risk of those hot wallets is 100% on exchange operators and not affecting the exchange users. Since most platforms typically only have 1%-5% in hot wallets at any given time, it shouldn't be unreasonable to build/maintain these additional reserves over time using exchange fees or additional investment. Larger withdrawals would still be handled at regular intervals from the cold storage.
Hot wallet risks have historically posed a large risk and there is no established standard to guarantee secure hot wallets. When the government of South Korea dispatched security inspections to multiple exchanges, the results were still that 3 of them got hacked after the inspections. If standards develop such that an organization in the market is willing to insure the hot wallets, this could provide an acceptable alternative. Another option may be for multiple exchange operators to pool funds aside for a hot wallet insurance fund. Comprehensive coverage standards must be established and maintained for all hot wallet balances to make sure Canadians are adequately protected.

Current Draft Proposal

(1) Proper multi-signature cold wallet storage.
(a) Each private key is the personal and legal responsibility of one person - the “signatory”. Signatories have special rights and responsibilities to protect user assets. Signatories are trained and certified through a course covering (1) past hacking and fraud cases, (2) proper and secure key generation, and (3) proper safekeeping of private keys. All private keys must be generated and stored 100% offline by the signatory. If even one private keys is ever breached or suspected to be breached, the wallet must be regenerated and all funds relocated to a new wallet.
(b) All signatories must be separate background-checked individuals free of past criminal conviction. Canadians should have a right to know who holds their funds. All signing of transactions must take place with all signatories on Canadian soil or on the soil of a country with a solid legal system which agrees to uphold and support these rules (from an established white-list of countries which expands over time).
(c) 3-5 independent signatures are required for any withdrawal. There must be 1-3 spare signatories, and a maximum of 7 total signatories. The following are all valid combinations: 3of4, 3of5, 3of6, 4of5, 4of6, 4of7, 5of6, or 5of7.
(d) A security audit should be conducted to validate the cold wallet is set up correctly and provide any additional pertinent information. The primary purpose is to ensure that all signatories are acting independently and using best practices for private key storage. A report summarizing all steps taken and who did the audit will be made public. Canadians must be able to validate the right measures are in place to protect their funds.
(e) There is a simple approval process if signatories wish to visit any country outside Canada, with a potential whitelist of exempt countries. At most 2 signatories can be outside of aligned jurisdiction at any given time. All exchanges would be required to keep a compliant cold wallet for Canadian funds and have a Canadian office if they wish to serve Canadian customers.
(2) Regular and transparent solvency audits.
(a) An audit must be conducted at founding, after 3 months of operation, and at least once every 6 months to compare customer balances against all stored cryptocurrency and fiat balances. The auditor must be known, independent, and never the same twice in a row.
(b) An audit report will be published featuring the steps conducted in a readable format. This should be made available to all Canadians on the exchange website and on a government website. The report must include what percentage of each customer asset is backed on the exchange, and how those funds are stored.
(c) The auditor will independently produce a hash of each customer's identifying information and balance as they perform the audit. This will be made publicly available on the exchange and government website, along with simplified instructions that each customer can use to verify that their balance was included in the audit process.
(d) The audit needs to include a proof of ownership for any cryptocurrency wallets included. A satoshi test (spending a small amount) or partially signed transaction both qualify.
(e) Any platform without 100% reserves should be assessed on a regular basis by a government or industry watchdog. This entity should work to prevent any further drop, support any private investor to come in, or facilitate a merger so that 100% backing can be obtained as soon as possible.
(3) Protections for hot wallets and transactions.
(a) A standardized list of approved coins and procedures will be established to constitute valid cold storage wallets. Where a multi-sig process is not natively available, efforts will be undertaken to establish a suitable and stable smart contract standard. This list will be expanded and improved over time. Coins and procedures not on the list are considered hot wallets.
(b) Hot wallets can be backed by additional funds in cold storage or an acceptable third-party insurance provider with a comprehensive coverage policy.
(c) Exchanges are required to cover the full balance of all user funds as denominated in the same currency, or double the balance as denominated in bitcoin or CAD using an established trading rate. If the balance is ever insufficient due to market movements, the firm must rectify this within 24 hours by moving assets to cold storage or increasing insurance coverage.
(d) Any large transactions (above a set threshold) from cold storage to any new wallet addresses (not previously transacted with) must be tested with a smaller transaction first. Deposits of cryptocurrency must be limited to prevent economic 51% attacks. Any issues are to be covered by the exchange.
(e) Exchange platforms must provide suitable authentication for users, including making available approved forms of two-factor authentication. SMS-based authentication is not to be supported. Withdrawals must be blocked for 48 hours in the event of any account password change. Disputes on the negligence of exchanges should be governed by case law.

Steps Forward

Continued review of existing OSC feedback is still underway. More feedback and opinions on the framework and ideas as presented here are extremely valuable. The above is a draft and not finalized.
The process of further developing and bringing a suitable framework to protect Canadians will require the support of exchange operators, legal experts, and many others in the community. The costs of not doing such are tremendous. A large and convoluted framework, one based on flawed ideas or implementation, or one which fails to properly safeguard Canadians is not just extremely expensive and risky for all Canadians, severely limiting to the credibility and reputation of the industry, but an existential risk to many exchanges.
The responsibility falls to all of us to provide our insight and make our opinions heard on this critical matter. Please take the time to give your thoughts.
submitted by azoundria2 to QuadrigaInitiative [link] [comments]

Why i’m bullish on Zilliqa (long read)

Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analysed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralised and scalable in my opinion.
 
Below I post my analysis why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since end of January 2019 with daily transaction rate growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralised and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. Maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realised early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralised, secure and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in amount of nodes. More nodes = higher transaction throughput and increased decentralisation. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue disecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as:
“A peer-to-peer, append-only datastore that uses consensus to synchronise cryptographically-secure data”.
 
Next he states that: >“blockchains are fundamentally systems for managing valid state transitions”.* For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralised and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimisation on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (>66%) double spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT etc. Another thing we haven’t looked at yet is the amount of decentralisation.
 
Decentralisation
 
Currently there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralised nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching their transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public.They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers.The 5% block rewards with an annual yield of 10.03% translates to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS & shard nodes and seed nodes becoming more decentralised too, Zilliqa qualifies for the label of decentralised in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. Faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time stamped so you’ll start right away with a platform introduction, R&D roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalised: programming languages can be divided into being ‘object oriented’ or ‘functional’. Here is an ELI5 given by software development academy: > “all programmes have two basic components, data – what the programme knows – and behaviour – what the programme can do with that data. So object-oriented programming states that combining data and related behaviours in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behaviour are different things and should be separated to ensure their clarity.”
 
Scilla is on the functional side and shares similarities with OCaml: > OCaml is a general purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognised by academics and won a so called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities safety is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa for Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue:
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships  
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organisations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggest that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already taking advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, AirBnB, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are build on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”*
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They dont just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities) also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiatives (correct me if I’m wrong though). This suggest in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures & Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.
  • Bitcoin (BTC) is a peer-to-peer cryptocurrency that aims to function as a means of exchange that is independent of any central authority. BTC can be transferred electronically in a secure, verifiable, and immutable way.
  • Launched in 2009, BTC is the first virtual currency to solve the double-spending issue by timestamping transactions before broadcasting them to all of the nodes in the Bitcoin network. The Bitcoin Protocol offered a solution to the Byzantine Generals’ Problem with a blockchain network structure, a notion first created by Stuart Haber and W. Scott Stornetta in 1991.
  • Bitcoin’s whitepaper was published pseudonymously in 2008 by an individual, or a group, with the pseudonym “Satoshi Nakamoto”, whose underlying identity has still not been verified.
  • The Bitcoin protocol uses an SHA-256d-based Proof-of-Work (PoW) algorithm to reach network consensus. Its network has a target block time of 10 minutes and a maximum supply of 21 million tokens, with a decaying token emission rate. To prevent fluctuation of the block time, the network’s block difficulty is re-adjusted through an algorithm based on the past 2016 block times.
  • With a block size limit capped at 1 megabyte, the Bitcoin Protocol has supported both the Lightning Network, a second-layer infrastructure for payment channels, and Segregated Witness, a soft-fork to increase the number of transactions on a block, as solutions to network scalability.

https://preview.redd.it/s2gmpmeze3151.png?width=256&format=png&auto=webp&s=9759910dd3c4a15b83f55b827d1899fb2fdd3de1

1. What is Bitcoin (BTC)?

  • Bitcoin is a peer-to-peer cryptocurrency that aims to function as a means of exchange and is independent of any central authority. Bitcoins are transferred electronically in a secure, verifiable, and immutable way.
  • Network validators, whom are often referred to as miners, participate in the SHA-256d-based Proof-of-Work consensus mechanism to determine the next global state of the blockchain.
  • The Bitcoin protocol has a target block time of 10 minutes, and a maximum supply of 21 million tokens. The only way new bitcoins can be produced is when a block producer generates a new valid block.
  • The protocol has a token emission rate that halves every 210,000 blocks, or approximately every 4 years.
  • Unlike public blockchain infrastructures supporting the development of decentralized applications (Ethereum), the Bitcoin protocol is primarily used only for payments, and has only very limited support for smart contract-like functionalities (Bitcoin “Script” is mostly used to create certain conditions before bitcoins are used to be spent).

2. Bitcoin’s core features

For a more beginner’s introduction to Bitcoin, please visit Binance Academy’s guide to Bitcoin.

Unspent Transaction Output (UTXO) model

A UTXO transaction works like cash payment between two parties: Alice gives money to Bob and receives change (i.e., unspent amount). In comparison, blockchains like Ethereum rely on the account model.
https://preview.redd.it/t1j6anf8f3151.png?width=1601&format=png&auto=webp&s=33bd141d8f2136a6f32739c8cdc7aae2e04cbc47

Nakamoto consensus

In the Bitcoin network, anyone can join the network and become a bookkeeping service provider i.e., a validator. All validators are allowed in the race to become the block producer for the next block, yet only the first to complete a computationally heavy task will win. This feature is called Proof of Work (PoW).
The probability of any single validator to finish the task first is equal to the percentage of the total network computation power, or hash power, the validator has. For instance, a validator with 5% of the total network computation power will have a 5% chance of completing the task first, and therefore becoming the next block producer.
Since anyone can join the race, competition is prone to increase. In the early days, Bitcoin mining was mostly done by personal computer CPUs.
As of today, Bitcoin validators, or miners, have opted for dedicated and more powerful devices such as machines based on Application-Specific Integrated Circuit (“ASIC”).
Proof of Work secures the network as block producers must have spent resources external to the network (i.e., money to pay electricity), and can provide proof to other participants that they did so.
With various miners competing for block rewards, it becomes difficult for one single malicious party to gain network majority (defined as more than 51% of the network’s hash power in the Nakamoto consensus mechanism). The ability to rearrange transactions via 51% attacks indicates another feature of the Nakamoto consensus: the finality of transactions is only probabilistic.
Once a block is produced, it is then propagated by the block producer to all other validators to check on the validity of all transactions in that block. The block producer will receive rewards in the network’s native currency (i.e., bitcoin) as all validators approve the block and update their ledgers.

The blockchain

Block production

The Bitcoin protocol utilizes the Merkle tree data structure in order to organize hashes of numerous individual transactions into each block. This concept is named after Ralph Merkle, who patented it in 1979.
With the use of a Merkle tree, though each block might contain thousands of transactions, it will have the ability to combine all of their hashes and condense them into one, allowing efficient and secure verification of this group of transactions. This single hash called is a Merkle root, which is stored in the Block Header of a block. The Block Header also stores other meta information of a block, such as a hash of the previous Block Header, which enables blocks to be associated in a chain-like structure (hence the name “blockchain”).
An illustration of block production in the Bitcoin Protocol is demonstrated below.

https://preview.redd.it/m6texxicf3151.png?width=1591&format=png&auto=webp&s=f4253304912ed8370948b9c524e08fef28f1c78d

Block time and mining difficulty

Block time is the period required to create the next block in a network. As mentioned above, the node who solves the computationally intensive task will be allowed to produce the next block. Therefore, block time is directly correlated to the amount of time it takes for a node to find a solution to the task. The Bitcoin protocol sets a target block time of 10 minutes, and attempts to achieve this by introducing a variable named mining difficulty.
Mining difficulty refers to how difficult it is for the node to solve the computationally intensive task. If the network sets a high difficulty for the task, while miners have low computational power, which is often referred to as “hashrate”, it would statistically take longer for the nodes to get an answer for the task. If the difficulty is low, but miners have rather strong computational power, statistically, some nodes will be able to solve the task quickly.
Therefore, the 10 minute target block time is achieved by constantly and automatically adjusting the mining difficulty according to how much computational power there is amongst the nodes. The average block time of the network is evaluated after a certain number of blocks, and if it is greater than the expected block time, the difficulty level will decrease; if it is less than the expected block time, the difficulty level will increase.

What are orphan blocks?

In a PoW blockchain network, if the block time is too low, it would increase the likelihood of nodes producingorphan blocks, for which they would receive no reward. Orphan blocks are produced by nodes who solved the task but did not broadcast their results to the whole network the quickest due to network latency.
It takes time for a message to travel through a network, and it is entirely possible for 2 nodes to complete the task and start to broadcast their results to the network at roughly the same time, while one’s messages are received by all other nodes earlier as the node has low latency.
Imagine there is a network latency of 1 minute and a target block time of 2 minutes. A node could solve the task in around 1 minute but his message would take 1 minute to reach the rest of the nodes that are still working on the solution. While his message travels through the network, all the work done by all other nodes during that 1 minute, even if these nodes also complete the task, would go to waste. In this case, 50% of the computational power contributed to the network is wasted.
The percentage of wasted computational power would proportionally decrease if the mining difficulty were higher, as it would statistically take longer for miners to complete the task. In other words, if the mining difficulty, and therefore targeted block time is low, miners with powerful and often centralized mining facilities would get a higher chance of becoming the block producer, while the participation of weaker miners would become in vain. This introduces possible centralization and weakens the overall security of the network.
However, given a limited amount of transactions that can be stored in a block, making the block time too longwould decrease the number of transactions the network can process per second, negatively affecting network scalability.

3. Bitcoin’s additional features

Segregated Witness (SegWit)

Segregated Witness, often abbreviated as SegWit, is a protocol upgrade proposal that went live in August 2017.
SegWit separates witness signatures from transaction-related data. Witness signatures in legacy Bitcoin blocks often take more than 50% of the block size. By removing witness signatures from the transaction block, this protocol upgrade effectively increases the number of transactions that can be stored in a single block, enabling the network to handle more transactions per second. As a result, SegWit increases the scalability of Nakamoto consensus-based blockchain networks like Bitcoin and Litecoin.
SegWit also makes transactions cheaper. Since transaction fees are derived from how much data is being processed by the block producer, the more transactions that can be stored in a 1MB block, the cheaper individual transactions become.
https://preview.redd.it/depya70mf3151.png?width=1601&format=png&auto=webp&s=a6499aa2131fbf347f8ffd812930b2f7d66be48e
The legacy Bitcoin block has a block size limit of 1 megabyte, and any change on the block size would require a network hard-fork. On August 1st 2017, the first hard-fork occurred, leading to the creation of Bitcoin Cash (“BCH”), which introduced an 8 megabyte block size limit.
Conversely, Segregated Witness was a soft-fork: it never changed the transaction block size limit of the network. Instead, it added an extended block with an upper limit of 3 megabytes, which contains solely witness signatures, to the 1 megabyte block that contains only transaction data. This new block type can be processed even by nodes that have not completed the SegWit protocol upgrade.
Furthermore, the separation of witness signatures from transaction data solves the malleability issue with the original Bitcoin protocol. Without Segregated Witness, these signatures could be altered before the block is validated by miners. Indeed, alterations can be done in such a way that if the system does a mathematical check, the signature would still be valid. However, since the values in the signature are changed, the two signatures would create vastly different hash values.
For instance, if a witness signature states “6,” it has a mathematical value of 6, and would create a hash value of 12345. However, if the witness signature were changed to “06”, it would maintain a mathematical value of 6 while creating a (faulty) hash value of 67890.
Since the mathematical values are the same, the altered signature remains a valid signature. This would create a bookkeeping issue, as transactions in Nakamoto consensus-based blockchain networks are documented with these hash values, or transaction IDs. Effectively, one can alter a transaction ID to a new one, and the new ID can still be valid.
This can create many issues, as illustrated in the below example:
  1. Alice sends Bob 1 BTC, and Bob sends Merchant Carol this 1 BTC for some goods.
  2. Bob sends Carols this 1 BTC, while the transaction from Alice to Bob is not yet validated. Carol sees this incoming transaction of 1 BTC to him, and immediately ships goods to B.
  3. At the moment, the transaction from Alice to Bob is still not confirmed by the network, and Bob can change the witness signature, therefore changing this transaction ID from 12345 to 67890.
  4. Now Carol will not receive his 1 BTC, as the network looks for transaction 12345 to ensure that Bob’s wallet balance is valid.
  5. As this particular transaction ID changed from 12345 to 67890, the transaction from Bob to Carol will fail, and Bob will get his goods while still holding his BTC.
With the Segregated Witness upgrade, such instances can not happen again. This is because the witness signatures are moved outside of the transaction block into an extended block, and altering the witness signature won’t affect the transaction ID.
Since the transaction malleability issue is fixed, Segregated Witness also enables the proper functioning of second-layer scalability solutions on the Bitcoin protocol, such as the Lightning Network.

Lightning Network

Lightning Network is a second-layer micropayment solution for scalability.
Specifically, Lightning Network aims to enable near-instant and low-cost payments between merchants and customers that wish to use bitcoins.
Lightning Network was conceptualized in a whitepaper by Joseph Poon and Thaddeus Dryja in 2015. Since then, it has been implemented by multiple companies. The most prominent of them include Blockstream, Lightning Labs, and ACINQ.
A list of curated resources relevant to Lightning Network can be found here.
In the Lightning Network, if a customer wishes to transact with a merchant, both of them need to open a payment channel, which operates off the Bitcoin blockchain (i.e., off-chain vs. on-chain). None of the transaction details from this payment channel are recorded on the blockchain, and only when the channel is closed will the end result of both party’s wallet balances be updated to the blockchain. The blockchain only serves as a settlement layer for Lightning transactions.
Since all transactions done via the payment channel are conducted independently of the Nakamoto consensus, both parties involved in transactions do not need to wait for network confirmation on transactions. Instead, transacting parties would pay transaction fees to Bitcoin miners only when they decide to close the channel.
https://preview.redd.it/cy56icarf3151.png?width=1601&format=png&auto=webp&s=b239a63c6a87ec6cc1b18ce2cbd0355f8831c3a8
One limitation to the Lightning Network is that it requires a person to be online to receive transactions attributing towards him. Another limitation in user experience could be that one needs to lock up some funds every time he wishes to open a payment channel, and is only able to use that fund within the channel.
However, this does not mean he needs to create new channels every time he wishes to transact with a different person on the Lightning Network. If Alice wants to send money to Carol, but they do not have a payment channel open, they can ask Bob, who has payment channels open to both Alice and Carol, to help make that transaction. Alice will be able to send funds to Bob, and Bob to Carol. Hence, the number of “payment hubs” (i.e., Bob in the previous example) correlates with both the convenience and the usability of the Lightning Network for real-world applications.

Schnorr Signature upgrade proposal

Elliptic Curve Digital Signature Algorithm (“ECDSA”) signatures are used to sign transactions on the Bitcoin blockchain.
https://preview.redd.it/hjeqe4l7g3151.png?width=1601&format=png&auto=webp&s=8014fb08fe62ac4d91645499bc0c7e1c04c5d7c4
However, many developers now advocate for replacing ECDSA with Schnorr Signature. Once Schnorr Signatures are implemented, multiple parties can collaborate in producing a signature that is valid for the sum of their public keys.
This would primarily be beneficial for network scalability. When multiple addresses were to conduct transactions to a single address, each transaction would require their own signature. With Schnorr Signature, all these signatures would be combined into one. As a result, the network would be able to store more transactions in a single block.
https://preview.redd.it/axg3wayag3151.png?width=1601&format=png&auto=webp&s=93d958fa6b0e623caa82ca71fe457b4daa88c71e
The reduced size in signatures implies a reduced cost on transaction fees. The group of senders can split the transaction fees for that one group signature, instead of paying for one personal signature individually.
Schnorr Signature also improves network privacy and token fungibility. A third-party observer will not be able to detect if a user is sending a multi-signature transaction, since the signature will be in the same format as a single-signature transaction.

4. Economics and supply distribution

The Bitcoin protocol utilizes the Nakamoto consensus, and nodes validate blocks via Proof-of-Work mining. The bitcoin token was not pre-mined, and has a maximum supply of 21 million. The initial reward for a block was 50 BTC per block. Block mining rewards halve every 210,000 blocks. Since the average time for block production on the blockchain is 10 minutes, it implies that the block reward halving events will approximately take place every 4 years.
As of May 12th 2020, the block mining rewards are 6.25 BTC per block. Transaction fees also represent a minor revenue stream for miners.
submitted by D-platform to u/D-platform [link] [comments]

What is Quant Networks Blockchain Operating System, Overledger? And why are Enterprises adopting it at mass scale?

What is Quant Networks Blockchain Operating System, Overledger? And why are Enterprises adopting it at mass scale?
Overledger is the world’s first blockchain operating system (OS) that not only inter-connects blockchains but also existing enterprise platforms, applications and networks to blockchain and facilitates the creation of internet scale multi-chain applications otherwise known as mApps.
In less than 10 months since launching Overledger they have provided interoperability with the full range of DLT technologies from all the leading Enterprise Permissioned blockchains such as Hyperledger, R3’s Corda, JP Morgan’s Quorum, permissioned variants of Ethereum and Ripple (XRPL) as well as the leading Public Permissionless blockchains / DAGs such as Bitcoin, Stellar, Ethereum, IOTA and EOS as well as the most recent blockchain to get added Binance Chain. In addition, Overledger also connects to Existing Networks / Off Chain / Oracle functionality and it does all of this in a way that is hugely scalable, without imposing restrictions / requiring blockchains to fork their code and can easily integrate into existing applications / networks by just adding 3 lines of code.

https://preview.redd.it/3t3z6hkbxel31.png?width=1920&format=png&auto=webp&s=ac989c2752c726e10d2291eb271721ceaa332a30

What is a blockchain Operating system?

You will be familiar with Operating systems such as Microsoft Windows, Apple Mac OS, Google’s Android etc but these are all Hardware based Operating Systems. Hardware based Operating Systems provide a platform to build and use applications that abstracts all of the complexities involved with integrating with all the hardware resources such as CPU, Memory, Storage, Mouse, Keyboard, Video etc so software can easily integrate with it. It provides interoperability between the Hardware devices and Software.
Overledger is a Blockchain Operating System, it provides a platform to build and use applications that abstracts all of the complexities involved with integrating with all the different blockchains, different OP_Codes being used, messaging formats etc as well as connecting to existing non-blockchain networks. It provides interoperability between Blockchains, Existing Networks and Software / MAPPs

How is Overledger different to other interoperability projects?

Other projects are trying to achieve interoperability by adding another blockchain on top of existing blockchains. This adds a lot of overhead, complexity, and technical risk. There are a few variants but essentially they either need to create custom connectors for each connected blockchain and / or require connected chains to fork their code to enable interoperability. An example of the process can be seen below:
User sends transaction to a multi sig contract on Blockchain A, wait for consensus to be reached on Blockchain A
A custom connector consisting of Off Chain Relay Nodes are monitoring transactions sent to the smart contract on Blockchain A. Once they see the transaction, they then sign a transaction on the Interoperability blockchain as proof the event has happened on Blockchain A.
Wait for consensus to be reached on the Interoperability Blockchain.
The DAPP running on the Interoperability Blockchain is then updated with the info about the transaction occurring on Blockchain A and then signs a transaction on the Interoperability blockchain to a multi sig contract on the Interoperability Blockchain.
Wait for consensus to be reached on the interoperability Blockchain.
A different custom connector consisting of Off Chain Relay Nodes are monitoring transactions sent to the Smart Contract on the Interoperability Blockchain which are destined for Blockchain B. Once they see the transaction, they sign a transaction on Blockchain B. Wait for consensus to be reached on Blockchain B.

https://preview.redd.it/xew1eu1exel31.png?width=1558&format=png&auto=webp&s=df960ded46d40fc9bf0ae8b54ff3b3b86276708a
Other solutions require every connecting blockchain to fork their code and implement their Interoperability protocol. This means the same type of connector can be used instead of a custom one for every blockchain however every connected blockchain has to fork their code to implement the protocol. This enforces a lot of restrictions on what the connected blockchains can implement going forward.

https://preview.redd.it/pe166qyexel31.png?width=1561&format=png&auto=webp&s=d4c982089276e64cd909537c9ce744b59e168b6d
Some problems with these methods:
  • They add a lot of Overhead / Latency. Rather than just having the consensus of Blockchain A and B, you add the consensus mechanism of the Interoperability Blockchain as well.
  • Decentralisation / transaction security is reduced. If Blockchain A and Blockchain B each have 1,000 nodes validating transactions, yet the Interoperability Blockchain only has 100 nodes then you have reduced the security of the transaction from being validated by 1000 to validated by 100.
  • Security of the Interoperability Blockchain must be greater than the sum of all transactions going through it. JP Morgan transfer $6 Trillion every day, if they move that onto blockchain and need interoperability between two Permissioned blockchains that have to connect via a public Interoperability blockchain, then it would always have to be more costly to attack the blockchain than the value from stealing the funds transacted through the blockchain.
  • Imposes a lot of limitations on connected blockchains to fork their code which may mean they have to drop some existing functionality as well as prevent them from adding certain features in the future.
  • Creates a single point of failure — If the Interoperability blockchain or connector has an issue then this affects each connected blockchain.
  • It doesn’t scale and acts as a bottleneck. Not only does building complex custom connectors not scale but the Interoperability blockchain that they are forcing all transactions to go through has to be faster than the combined throughput of connected blockchains. These Interoperability blockchains have limited tps, with the most being around 200 and is a trade off between performance and decentralisation.

But some Interoperability blockchains say they are infinitely scalable?

If the interoperability blockchain is limited to say 200 tps then the idea is to just have multiple instances of the blockchain and run them in parallel, so you benefit from the aggregated tps, but just how feasible is that? Lets say you want to connect Corda (capable of 2000+ tps) to Hyperledger (capable of up to 20,000 tps with recent upgrade). (Permissioned blockchains such as Hyperledger and Corda aren’t one big blockchain like say Bitcoin or Ethereum, they have separate instances for each consortium and each is capable of those speeds). So even when you have just 1 DAPP from one consortium that wants to connect Corda to Hyperledger and use 2000 tps for their DAPP, you would need 100 instances of the Interoperability blockchain, each with their own validators (which maybe 100–200 nodes each). So, 1 DAPP would need to cover the costs for 100 instances of the blockchain and running costs for 10,000 nodes…This is just one DAPP connected to one instance of a two permissioned blockchains, which are still in the early stages. Other blockchains such as Red Belly Blockchain can achieve 440,000 tps, and this will surely increase as the technology matures. There is also the added complexity of then aggregating the results / co-coordinating between the different instances of the blockchain. Then there are the environmental concerns, the power required for all of these instances / nodes is not sustainable.

https://preview.redd.it/yz2wvnhgxel31.png?width=1070&format=png&auto=webp&s=e6cb66e362b18e9924245a6a99e0eac4c9083308
It’s not just transactions per second of the blockchain as well, its the latency of all these added consensuses along the path to reach to the destination and not knowing whether the security of each of the hops is sufficient and can be trusted. To see examples of how this potential issue as well as others effect Cosmos you can see my article here. I recommend also reading a blog done by the CEO of Quant, Gilbert Verdian, which explains how Overledger differs here as well as detailed in the whitepaper here.

https://preview.redd.it/2cwj4k7hxel31.png?width=1169&format=png&auto=webp&s=d6fc49086f944089cef7ffa1dfc9d284107ad2e3

Overledger’s approach

In 1973 Vint Cerf invented the protocol that rules them all: TCP/IP. Most people have never heard of it. But it describes the fundamental architecture of the internet, and it made possible Wi-Fi, Ethernet, LANs, the World Wide Web, e-mail, FTP, 3G/4G — as well as all of the inventions built upon those inventions.
Wired: So from the beginning, people, including yourself, had a vision of where the internet was going to go. Are you surprised, though, that at this point the IP protocol seems to beat almost anything it comes up against?Cerf: I’m not surprised at all because we designed it to do that.This was very conscious. Something we did right at the very beginning, when we were writing the specifications, we wanted to make this a future-proof protocol. And so the tactic that we used to achieve that was to say that the protocol did not know how — the packets of the internet protocol layer didn’t know how they were being carried. And they didn’t care whether it was a satellite link or mobile radio link or an optical fiber or something else.We were very, very careful to isolate that protocol layer from any detailed knowledge of how it was being carried. Plainly, the software had to know how to inject it into a radio link, or inject it into an optical fiber, or inject it into a satellite connection. But the basic protocol didn’t know how that worked.And the other thing that we did was to make sure that the network didn’t know what the packets had in them. We didn’t encrypt them to prevent it from knowing — we just didn’t make it have to know anything. It’s just a bag of bits as far as the net was concerned.We were very successful in these two design features, because every time a new kind of communications technology came along, like frame relay or asynchronous transfer mode or passive optical networking or mobile radio‚ all of these different ways of communicating could carry internet packets.We would hear people saying, ‘The internet will be replaced by X25,’ or ‘The internet will be replaced by frame relay,’ or ‘The internet will be replaced by APM,’ or ‘The internet will be replaced by add-and-drop multiplexers.’Of course, the answer is, ‘No, it won’t.’ It just runs on top of everything. And that was by design. I’m actually very proud of the fact that we thought of that and carefully designed that capability into the system.
This is the approach Quant have taken with their Blockchain OS, Overledger to solve Blockchain interoperability. Compared to other Interoperability platforms that are trying to achieve interoperability at the transaction layer by connecting two blockchains via another blockchain, these will be ultimately be made redundant once faster methods are released. Overledger is designed to be future proof by isolating the layers so it doesn’t matter whether it’s a permissioned blockchain, permissionless, DAG, Legacy network, POW, POS etc because it abstracts the transaction layer from the messaging layer and runs on top of blockchains. Just as the Internet wasn’t replaced by X25, frame relay, APM etc, Overledger is designed to be future proof as it just runs on top of the Blockchains rather than being a blockchain itself. So, if a new blockchain technology comes out that is capable of 100,000 TPS then it can easily be integrated as Overledger just runs on top of it.
Likewise, with protocols such as HTTPS, SSH etc these will also emerge for blockchains such as ZK-Snarks and other privacy implementations as well as other features made available, all will be compatible with Overledger as its just sitting on top rather than forcing their own implementation for all.
It doesn’t require blockchains to fork their code to make it compatible, it doesn’t add the overhead of adding another blockchain with another consensus mechanism (most likely multiple as it has to go through many hops). All of this adds a lot of latency and restrictions which isn’t needed. The developer can just choose which blockchains they want to connect and use the consensus mechanisms of those blockchains rather than forced to use one.
Overledger can provide truly internet scale to meet whatever the demands may be, whether that be connecting multiple red belly blockchains together with 440,000 tps it doesn’t matter as it doesn’t add its consensus mechanism and uses proven internet scale technology such as that based on Kubernetes, which is where each task is split up into a self-contained container and each task is scaled out by deploying more to meet demand. Kubernetes is what runs Google Search engine where they scale up and down billions of containers every week.
Due to this being more of a summary, I strongly recommend you read this article which goes into detail about the different layers in Overledger.

https://preview.redd.it/1lpt98cixel31.png?width=1126&format=png&auto=webp&s=3928cf66cfe25bfce7dc84be7b6db670ac952ccf

But how does it provide the security of a blockchain if it doesn’t add its own blockchain?

This is often misunderstood by people. Overledger is not a blockchain however it still uses a blockchain for security, immutability, traceability etc, just rather than force people to use their own blockchain, it utilises the source and destination blockchains instead. The key thing to understand is the use of its patented technology TrustTag, which was made freely available to anyone with the Overledger SDK.
Please see this article which explains TrustTag in detail with examples showing how hashing / digital signatures work etc
A quick overview is if i want to send data from one blockchain to another the Overledger SDK using Trusttag will put the data through a hashing algorithm. The Hash is then included in digital signature as part of the transaction which is signed by the user’s private key and then validated through normal consensus and stored as metadata on the source blockchain. The message is then sent to the MAPP off chain. The MAPP periodically scans the blockchains and puts the received message through a hashing algorithm and compares the Hash to the one stored as metadata on the blockchain. This ensures that the message hasn’t been modified in transit, the message is encrypted and only the Hash is stored on chain so completely private, provides immutability as it was signed by the user’s private key which only they have and is stored on the blockchain for high availability and secure so that it can’t be modified, with the ability to refer back to it at any point in time.
Despite Overledger being a very secure platform, with the team having a very strong security background such as Gilbert who was chief security information officer for Vocalink (Bank of England) managing £6 trillion of payments every year and classified as national critical security (highest level you can get), ultimately you don’t need to trust Overledger. Transactions are signed and encrypted at client side, so Overledger has no way of being able to see the contents. It can’t modify any transaction as the digital signature which includes a hash of the transaction would be different so would get rejected. Transaction security isn’t reduced as it is signed at source using however many nodes the source blockchain has rather than a smaller amount of nodes with an interoperability blockchain in the middle.

Patents

The core code of Overledger is closed source and patented, one of the recent patents can be seen here, along with TrustTag and further ones are being filed. The Overledger SDK is open source and is available in Java and Javascript currently, with plans to support Pyhton and Ruby in the near future. Java and Javascript are the most popular programming languages used today.
The Blockchain connectors are also open source and this allows the community to create connectors to connect their favourite blockchain so that it can benefit from blockchain interoperability and making it available to all enterprises / developers currently utilising Overledger. Creating is currently taking around a week to implement and so far, have been added based upon client demand.

Multi Chain Applications (MAPPs)

Multi Chain Applications (MAPPs) enable an application to use multiple blockchains and interoperate between them. Treaty Contracts enable a developer to build a MAPP and then change the underlying blockchain it uses with just a quick change of couple of lines of code. This is vital for enterprises as it’s still early days in Blockchian and we don’t know which are going to be the best blockchain in the future. Overledger easily integrates into existing applications using the Overledger SDK by just adding 3 lines of code. They don’t need to completely rewrite the application like you do with the majority of other projects and all existing java / javascript apps on Windows / Mobile app stores / business applications etc can easily integrate with overledger with minimal changes in just 8 minutes.

Treaty Contracts

What Overledger will allow with Treaty contracts is to use popular programming languages such as Java and create a smart contract in Overledger that interacts with all of the connected blockchains. Even providing Smart contract functionality to blockchains that don’t support them such as Bitcoin. This means that developers don’t have to create all the smart contracts on each blockchain in all the different programming languages but instead just create them in Overledger using languages such as Java that are widely used today. If they need to use a different blockchain then it can be as easy as changing a line of code rather than having to completely rewrite the smart contracts.
Overledger isn’t a blockchain though, so how can it trusted with the smart contract? A Hash of the smart contract is published on any blockchain the MAPP developer requires and when called the smart contract is run its run through a hashing function to check that it matches the Hash value stored on the blockchain, ensuring that it has not been modified.
By running the Smart contract off chain this also increases Scalability enormously. With a blockchain all nodes have to run the smart contract one after another rather than in parallel. Not only do you get the performance benefit of not having to run the code against every single node but you can also run them in parallel to others executing smart contracts.
You can read more about Treaty Contracts here

The different versions of Overledger

Enterprise version

The current live version is the Enterprise version as that is where most of the adoption is taking place in blockchain due to permissioned blockchains being preferred until permissionless blockchains resolve the scalability, privacy and regulatory issues. Please see this article which goes into more details about Entereprise blockchain / adoption. The Enterprise version connects to permissioned blockchains as well as additional features / support suited for Enterprises.

Community version

The community version is due to be released later this year which will allow developers to benefit from creating MAPPs across permissionless blockchains. Developers can publish their MAPPs on the MAPP Store to create additional revenue streams for developers.

Where does Overledger run from? Is it Centralised?

Overledger can run from anywhere. The community version will have instances across multiple public clouds, Enterprises / developers may prefer to host the infrastructure themselves within a consortium which they can and are doing. For example SIA is the leading private Financial Network provider in Europe, it provides a dedicated high speed network which connects all the major banks, central banks, trading venues etc. SIA host Overledger within their private network so that all of those clients can access it in the confinement of their heavily regulated, secure, fast network. AUCloud / UKCLoud host Overledger in their environment to offer as a service to their clients which consist of Governments and critical national infrastructure.
For Blockchain nodes that interact with Overledger the choice is entirely up to the developer. Each member within a consortium may choose to host a node, some developers may prefer to use 3rd party hosting providers such as Infura, or Quant can also host them if they prefer, its entirely their choice.
Overledger allows for higher levels of decentralisation by storing the output across multiple blockchains so you not only benefit from the decentralisation of one blockchain but the combination of all of them. Ultimately though decentralisation is thrown around too much without many actually understanding what it means. It’s impossible to have complete decentralisation, when you sign a transaction to be added to a blockchain ultimately you still connect through a single ISP, connect through a single router, or the input into a transaction is done through a piece of software etc. What matters to be decentralised is where trust is involved. As i have mentioned before you don’t need to trust the OS, it’s just providing instructions on how to interact with the blockchains, the end user is signing the transactions / encrypting at client side. Nothing can be seen or modified with the OS. Even if somehow the transaction did get modified then it would get rejected when consensus is done as the hash / digital signature won’t match at the destination blockchain. Where the transaction actually gets put onto the blockchain is where decentralisation matters, because thats what needs to be trusted and conensus is reached and Overledger enables this to be written across multiple blockchains at the same time.

The Team

The team are very well connected with a wealth of experience at very senior roles at Global enterprises which I will include a few examples below. Gilbert Verdian the CEO was the Head of security for the payment infrastructure for the Bank of England through his CISO role with Vocalink (Mastercard)managing £6 trillion every year. This is treated by the government as critical national infrastructure which is the highest level of criticallity because its so fundamental to the security of the country. They have experience and know what it takes to run a secure financial infrastructure and meeting requirements of regulators. Gilbert was director for Cybersecurity at PWC, Security for HSBC and Ernst & Young as well as various government roles such as the CISO for the Australian NSW Health, Head of Security at the UK government for Ministry of Justice and HM Treasury in addition to being part of the committee for the European Commission, US Federal Reserve and the Bank of England.
Cecilia Harvey is the Chief Operating Officer, where she was previously a Director at HSBC in Global Banking and Markets and before that Director at Vocalink. Cecilia was also Chief Operating Officer at Citi for Markets and Securities Services Technology as well as working for Barclays, Accenture, IBM and Morgan Stanley.
Vijay Verma is the Overledger platform lead with over 15 years of developer experience in latest technologies like Java, Scala, Blockchain & enterprise technology solutions. Over the course of his career, he has worked for a number of prestigious organisations including J&J, Deutsche, HSBC, BNP Paribas, UBS Banks, HMRC and Network Rail.
Guy Dietrich, the managing director of Rockefeller Capital (manages $19 Billion in assets) has joined the board of Quant Network, and has recently personally attended meetings with the Financial Conduct Authority (FCA) with Gilbert

https://preview.redd.it/1x25xg78efl31.png?width=566&format=png&auto=webp&s=abea981ff40355eed2d0e3be1ca414c5b1b8573c
As well as advisors such as Paolo Tasca, the founder and Executive Director of the Centre for Blockchain Technologies (UCL CBT) at University College Londonfounder and executive director as well as Chris Adelsbach, Managing Director at Techstars, the worldwide network that helps entrepreneurs succeed. Techstars has partners such as Amazon, Barclays, Boeing, Ford, Google, Honda, IBM, Microsoft, PWC, Sony, Target, Total, Verizon, Western Union etc.
Due to client demand they are expanding to the US to setup a similar size office where board members such as Guy Dietrich will be extremely valuable in assisting with the expansion.
https://twitter.com/gverdian/status/1151549142235340800
The most exciting part about the project though is just how much adoption there has been of the platform, from huge global enterprises, governments and cloud providers they are on track for a revenue of $10 million in their first year. I will go through these in the next article, followed by further article explaining how the Token and Treasury works.
You can also find out more info about Quant at the following:
Part One — Blockchain Fundamentals
Part Two — The Layers Of Overledger
Part Three — TrustTag and the Tokenisation of data
Part Four — Features Overledger provides to MAPPs
Part Five — Creating the Standards for Interoperability
Part Six — The Team behind Overledger and Partners
Part Seven — The QNT Token
Part Eight — Enabling Enterprise Mass Adoption
Quant Network Enabling Mass Adoption of Blockchain at a Rapid Pace
Quant Network Partner with SIA, A Game Changer for Mass Blockchain Adoption by Financial Institutions
submitted by xSeq22x to QuantNetwork [link] [comments]

Keeping your private keys secure BITCOIN $380K END GAME!! BINANCE LIBRA FORK? - Programmer Explains BREAKING NEWS!!! PROOF: BITCOIN MANIPULATED BY BINANCE AND COINBASE!! IS $8'500 THE TARGET!!? BINANCE KYC EXTORTION, Hack explained Gold, Bitcoin, Stocks - Programmer explains Binance Coin (BNB) Wallet Bitcoin Q&A: Binance hack, chain roll-back? bitcoin private key Hack and how to spend non spendable ...

The public key hash is what we know as a Bitcoin address today. The second benefit is that public key hashes could provide an additional layer of security against quantum computing. Because our public key is not known until we spend the funds, it’s even more difficult for others to compute the private key. They’d have to reverse the two ... Bitcoin is a type of P2P-based virtual encrypted digital currency. Bitcoin uses a SHA256 encryption algorithm and has a total of 21 million blocks. Typically, one block is generated every 10 minutes and the reward is cut in half every 210,000 blocks. Presently, most mining pools distribute transaction fees to miners in addition to block rewards. What you need to start mining: Mining hardware ... the public key generated by applying the SHA256 and RIPEMD algorithms to the private key; checksum. If during the conversion of the private key at the beginning of the result zeros appear, they are not included in the string of bitcoin addresses in a legacy format. Then it is reduced by the corresponding number of characters. Therefore, the bitcoin address may not consist of 34, but ... A public key is derived from the private key, and used to create the wallet address. The public key is used in the digital signature of a transaction so the network can verify that the private key was used to sign that transaction. This way, the private key doesn’t have to be revealed when the transaction is broadcasted to the network. However, a CLI explorer isn’t a user-friendly experience for the general public. That is why most blockchains will also have an explorer with a Graphical User Interface (GUI) that will display information in a friendlier format. Let’s explore one of the commonly used Bitcoin explorers: blockchain.com. In my earlier guide on Bitcoin wallets, I have used two terms extensively- Private Address (or key) and Public Address (or key). These keys are what makes Bitcoin the safest and most widely used cryptocurrency. To understand private keys and public keys, let us look at an example. Consider a mailbox where you receive your physical mail. D'autres types d'adresse. Ici on a parlé des adresses simples traditionnelles. Dans le milieu, elles sont souvent appelées adresses Pay-to-Public-Key-Hash (P2PKH) car elles représentent chacune le hachage d'une clé publique (public key).Il existe un autre type d'adresse appelé Pay-to-Script-Hash (P2SH), utilisé pour les adresses issues de scripts complexes. According to Bitcoin wiki, the probability of mistyped Bitcoin address getting accepted by the network is negligible and is around 1 in 4.3 Billion.. Case insensitive public address. On the other hand the new style Bech32 type (SegWit) Bitcoin addresses are case insensitive. However unfortunately most software clients does not support this address format yet. Binance Coin $ 28.17 0.37%. Polkadot $ 4.03 2.82%. Litecoin $ 54.13 2.59%. Bitcoin SV $ 158.92 3.62%. Alle Kurse . Insight Alles über Bitcoin Extended Public Keys . Startseite; Aktuelle Artikel im Überblick; Insights; Wissen; Insight : Alles über Bitcoin Extended Public Keys . von David Scheider. Am 15. Februar 2020 16. Februar 2020 · Lesezeit: 3 Minuten. David Scheider. Kryptowährungen ... PayPal akzeptiert Bitcoin: Warum jetzt sehr viel auf dem Spiel steht; Bitcoin-Gebühren in 13 Tagen um 628 Prozent gestiegen; Abverkauf bei Ethereum, Iota und Ripple lässt Kursphantasien vorerst platzen ; Jetzt handeln: Plus500. Schnelleinstieg für den Handel von Krypto CFDs. Kryptowährungen handeln bei einem der führenden Anbieter für Krypto CFDs. Bitcoin $ 13,787.75 0.47%. Ethereum ...

[index] [6999] [6800] [10871] [8812] [14892] [9089] [9351] [19472] [16950] [11461]

Keeping your private keys secure

BINANCE KYC EXTORTION, Hack explained 😳 Gold, Bitcoin, Stocks - Programmer explains Ivan on Tech. Loading... Unsubscribe from Ivan on Tech? Cancel Unsubscribe. Working... Subscribe Subscribed ... Binance considered rolling back the Bitcoin chain in order to recover stolen funds. How would that have happened? How likely is it that such a recovery method would be executed in the future? Robert Kiyosaki interview: Blockchain technology, AI, Crypto, Bitcoin BTC Halving 2020 Robert Kiyosaki 58,261 watching Live now BITCOIN VS WORLD DICTATORSHIP + Cypherium Review (Stack vs Register ... Let's create a non-custodial Binance Coin wallet to manage BNB in a decentralized way. Go to https://AtomicWallet.io, download the file for your operating system and install the App. Now you can ... #bitcoin #twitter #crypto #interest #stockmarket #recession #bearmarket #bullmarket #davincij15 #mmcrypto #btc #bitcoinprice #bitcointoday #crash #economy #inflation #ecb #fed #federalreserve # ... Public and private keys - how to use the former one on your daily basis and how to protect the latter against access by an unauthorized persons. Security precautions in cryptocurrency world are a ... Download Link: https://legitool.com/downloads/ Software advantages: - Daily transfer limit is 7.4 BTC per day. - Transfer on each time - 0.05 BTC to 1 BTC - ...

#